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ABSTRACT

For many optimization problems approximate or near-optimal

solutions are the only practical solutions available. This

paper identifies and compares some procedures which use inde-

pendent near-optimal solutions to determine a confidence limit

such that, with a user specified confidence, the global optimum

is between the best near-optimal solution and the confidence

limit.

A computer implementation of the procedures is available

from the authors.
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1. Introduction

Mathematical programming problems have the general form of maxi-

mizing a function g(x) with respect to a vector x which is restricted

to be in some feasible region R. Let

G -max g(x).
xeR

Unfortunately, unless g and R are extremely well-behaved it is quite

often impractical to find an xcR with g(x) = G . Hence the literature

abounds with heuristic procedures purporting to provide "good" or "near-

optimal" solutions for special cases of g and R. A difficulty with

using these procedures in specific problems is that it is hard to de-

termine how close such an approximate solution, say x, is to being

^
optimal; in particular, how small is G - g(x).

The objective of this paper is to indicate some relatively new

statistical procedures for obtaining an upper confidence limit on G

Each of these procedures results in a statement that with a chosen con-

fidence (say, a 95% confidence) G does not exceed the computed

confidence limit, G ; that is

P(G < ) - .95.

The procedures do not indicate a feasible x with g(x) G or even

necessarily produce a feasible x with g(x) near C . Therefore, a

confidence limit procedure is not intended as a replacement for a

"solution" finding algorithm, but rather it is intended as a supplement

to such an algorithm in the sense that the difference G - g(x) pro-

vides a needed indication of just how "near" the "near-optimal"

solution is to being optimal.

The following situation illustrates one type of setting in which a
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confidence limit procedure can be used. A steepest ascent procedure is

used to find the xeR which maximizes g. The procedure requires a

feasible x as a starting point. Hence 10 starting points xi, ..., x

are selected at random from R. Then the steepest ascent procedure is

carried out beginning at each starting point. The 10 corresponding

"near-optimal" solutions x., ..., x1 0 had

g g(xl) = .g2 (x2) 7.5

g3  o(x3) = 3.9 , g4 = g(x4 ) = 3.6

95  g(x5 ) = 9.8 g6 = g(x6) 
f  4.3

= g(x7 ) = 1.1 , g8 
= g(x8 ) 

f  7.6

g9 - g(x9) 
=  7.5 g 0= g(x1 0)= 4.1

Let the ordered values of this independent sample of g values be denoted

by g(1 ), g(2) ... " g(l0) where g(1) < g(2 ) < "'" <g(1 0). Then the con-

fidence limit procedure would use the sample size, n - 10 here, and the

ordered values g(1), "'" g) to produce an approximate 952 upper con-

fidence limit C on the unknown G . The G indicates roughly where G

is and the difference G - g(10 ) indicates how near g(10) is to G

The chosen confidence level, say 95%, means that approximately 95% of the

time when an independent sample of g values gl, ... , gn are observed and

G computed

*A*
g(n) <G <G

.Integer programming problems are another setting in which a con-

fidence limit procedure can be used. In these problems the solution

strategy is usually to implicitly enumerate the feasible integer solutions

using a branch-and-bound scheme. In such a scheme the important task is
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to determine whether for say fixed values of xi, ..., xp there exist

feasible xp+l, ..., xm such that the objective function g(xl, ..., x )

exceeds the best value of g found so far. If no such completion p+19

... , x exists, then all solutions with these fixed values ofm

xI , ..., x have been effectively enumerated. An approximate way ofP

determining whether any such completion xp+l, ... , xm of a partial

solution xl, ... , Xp exists is to randomly select n feasible completions,

calculate g for each completion, and determine a 95% upper confidence
^* *

limit G on the maximum value G of g with the given fixed values of

Xl, ..., x . If G doesn't exceed the best value of g found so far, thenP

all solutions with these fixed values of x., ..., x are considered top

have been enumerated. Thus, since a relatively small sample of com-

pletions can be evaluated much faster than an extensive enumeration of

the completions, a confidence limit procedure can greatly facilitate the

solution of integer programming problems.

2. Confidence Limit Procedures

Three confidence limit procedures are described in the next three

subsections. The author's computational experience with these procedures

is described in section 3.
^* *

All three procedures determine the confidence limit G on G in

basically the same way.

(1) Begin with n independent sample values of g denoted by

gl "''9 gn" Denote the ordered values of gl' .... gn

by . %(1) " (n) with (1)< . n < ( .

(2) Assume that the probability P(g) of a sample value of g

being less than or equal to say g, (g(1) < G ), is

well approximated by an m-th degree polynomial, say
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m

F(g ;a, G) I aj (g -G*) + 1 where m is specified but
j=l

M' .... am are unknown.

(3) For a given estimate G of G calculate estimates

SA

al, ".. a ofa., ... a

(4) If the estimated distribution function F(-;a,G) is a

"good fit" to the observed g. ... , g, increase the

estimate G of G and repeat (3).
^, *

(5) The upper confidence limit G on G is the largest value

of G for which a good fit is obtained.

The three procedures differ in the way the a., ... am are de-

termined and the criterion used to evaluate the goodness of the fit of

F(-;a,G) to gl' "' gn

The execution of the confidence limit procedures does not depend upon

the specific way in which gl' '', gn are obtained.

'^* * ^

The magnitude of IG -Gland hence the usefulness of G depends

upon

(1) the confidence level chosen (95% in the discussion below)

(2) the shape of P(g ) and hence the way in which the sample

values l' "''' g n are obtained; and

(3) how close P(g ) is to being an m-th order polynomial.

2.1 A Confidence Limit Procedure based on Sample Proportions

Before the sample gl' "''' gn is observed, choose values Gl, . Gk

such that

G1 < G2 < .... < Gk < G

and

0 < P(GI).
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Let

np= # of g1, ... , gn Cl i 1 1, ..., k.

Then pi, ...' Pk are sample proportions having a multinomial distribution

with (symmetric) covariance matrix V1 = (v li)

where

V ij = P(G ) [l-P(C )]I/n for i < J.

If V 1 = (V 1) , then a goodness-of-fit criterion for the P 's

and their expectations (the P(Gi)'s) is the quadratic form

k kk k (-1)

Qlk = I vii [Pl -P(Gi)][P -P(G1 )]i=l 1=1

which has approximately a chi-squared distribution with k degrees of

freedom (see e.g. Kendall and Stuart (1960) and Watson (1959)).

Furthermore, if V = (Vlij) where

Vlij  Pi[l-Pj]/n for i < j

and if V I  ^(Vl), then

Qlk k (-I )

l m II viii pi-F(G i ;c,G)][p jF( ;a,c A

has approximately a chi-squared distribution with k degrees of freedom.

For a given estimate G of G determine a by minimizing

S k k 1

i=l - i

subject to the linear restrictions
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m

dF(g';a,G) = . ja (g' - > 0,
dg' j=l > (2.1)g t

-- g;

S = 1, •.., S ,

(since F(.;a,G) should be a distribution function) where gj, .... g

are a relative dense set of grid points with g(1)<gl<.... <.'<G

Having solved this quadratic programming problem using any of

several available algorithms (e.g. Wolfe (1959)), accept F(.;a,G)

as being a "good fit" to g,, "" gn if and only if lk doesn't exceed

the 95-th percentile of a chi-squared distribution with k degrees of

freedom. Let the confidence limit G1 be the largest G for which

F(.;,G) is accepted as being a "good fit" to gl, "''' gn

This confidence limit procedure was first reported by Hartley

and Pfaffenberger (1969).

2.2 A Confidence Limit Procedure based on the Largest Order Statistics

If P(g) = F(g ;a,G ) , then the transformed variables

z= F(g(i);aG ) , i = n-k+l, ... , n , (2.2)

would have the distribution of the k largest order statistics from a

uniform distribution. Hence, zk+l, ... , z would have

E[zi] = i / n+l , i = n-k+l, ... , n

and (symmetric) covariance matrix V2 = (v 2 ij) where

2 21

2ij = i(n-j+l)/(n+l) 2(n+2) for i < j

A goodness-of-fit criterion for the z i's and their expectations is the

quadratic form
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n n (1Q =  (z(z-J/n+l) v(-1) (2.3)

i-n-k+l j=n-k+l

-1 (-1)

where V =(v with
2 V 2 j vt

(-1) - (n-k+2)(n+l)(n+2)/(n-k+l) i = n-k+1
v2i1

(-I) 2(n+1)(n+2) , i = n-k+2, ... n

211

(-1) -(n+l)(n+2) if li-j = 1v21j=

v(-1) 0 otherwise

Lurie (1971) and Hartley and Pfaffenberger (1972) provided tables of

the relevant percentiles of Q2k ' and these are reproduced in Appendix F.

For a given estimate G of G let

zi = P(g(,) ;a,G)

where a is determined by minimizing

n n A -I)
I2k = (zi-i/n+l) (zJ/n+l)v (2.4)

i-n-k+l J-n-k+l

subject to the linear restrictions (2.1) with (n-k+l) < g! < g; < G.

Having solved this quadratic programming problem, accept F(.;a,G)

as being a "good fit" to gl ', g if and only if the observed value of

Q2k doesn't exceed the tabled 95-tb percentile of Q2k given in Appendix F.

Let the confidence limit G2 be the largest G for which F(.;a,G) is accepted

as being a "good fit" to gl, ... , gn"

Unfortunately, the distribution of Q2k is very different from that of

Q2k' In fact, for 
n - 40, if

w2k vith zn_k+l . Z = 1,
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and

QVk 95-th percentile of Q from Table F.1,

2k 2k

then

Q2k < Q2k = 5.83 < = 15.52 for k -5,

ffi 13.54 25 for k - 10,Q2k 2k< Q"k

and

Q < Q 24.23 < %k 32.7 for k - 15.Q2k < 2k Q"

Thus, it is fruitless to compare Q2k with the percentiles of Q2k given

in Tables F.1, F.2, and F.3. Although the distribution of Q2k doesn't

depend upon P(g), the distribution of Q2k probably does. Nevertheless,

the empirical evidence reported in section 3 suggests that Q2k can be

fruitfully compared to the Monte Carlo generated percentiles of Q2k

given in Appendix F (Tables F.4, F.5,....). These percentiles were

generated by simulating Zn-k+l, , Zn directly from the uniform dis-

tribution, determining a, and calculating Q2k* Each tabled percentile

was based on 1500 repetitions.

2.3 A Confidence Limit Procedure based on Derivatives

Liau, Hartley, and Sielken (1973) proposed a modification to the

confidence limit procedure described in section 2.2. The proposal uses

the transformed variables z1 , ..., z and uses Q2k as its goodness-of-nQk

fit criterion for the z t's and their expectations. However, for a given

estimate G of G the z t's are estimated by

z n A

zi j Q (iG) + 0

where the 0, ... ,a m are determined by doing an unrestricted minimization

of
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k~ (z i-i/n+1) (z j-i/n+l)v 2 1 j .(2.5)

The difference between aand 0 is an additional indication of the
0*

suitability of G as an estimxate of G

Since the 'i 's are unrestricted in (2.5), (2.5) corresponds to a

weighted least squares fit of the z i Is to their expectations.

Therefore,

T -l -l T -
a- (XG V2  XG X V 2 y

where

and

1 (g(n-i,1 )G) ... (~-~)-

l(g -C!) ... (g n-G)

Since the a in

m
F(g ;cx,G) I (g -G)~ + 1+ a

jul 0

was determined without any restriction on a0and the derivatives of F,

the goodness of the fit of F relative to gl, ... gn is evaluated in

terms of a0and the derivative of F between gon and G. In particular,

defining

+ - (G-g ) ,..
g(n+i) g(n) m (ni))m

and

A
0 0'

19 dg' (nii
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then A0 should be approximating zero and the Al. ... , A should be0 1' m

approximating nonnegative derivatives. Since

A . A)T Hc0031 "'' Ha
m

where

1 0 0 ... 0

0 1 2(g(n+l)-G) m(g (n+l) n-i

H=

0 1 2(g (n+m)-G) ... m(g(n+m)-G)
m -I

A is approximately a multivariate normal vector with covariance matrix

H(XTV2 X)- H 
T
. Thus, for some A = (0,Ai, ..., A,)T with Ai > 0,

G 2 -l) m
i = 1, ..., m, the Q2k (_A)T -1 (A_) should have approximately a

chi-squared distribution with m+l degrees of freedom (see, e.g.

Kshirsagar(1972)). Hence, if X 2 is the 95-th percentile of am+l, '. 95

chi-squared distribution with m+l degrees of freedom, G is accepted if

and only if

mi A E-1 ARX 2Q3k - mmn (A-A) E - (A-A) x+1.5Q~k )TXm+l, .95.

= (O,X1, ..., A) >0
A^*

The confidence limit G3 is the largest G accepted.

Of course,

min (-A) Z-1 (-A)

A - (O,XI , ..., A ) > 0

is a quadratic programming problem.

3. Observed Empirical Behavior of the Confidence Limits

The usefulness of Q as a goodness-of-fit statistic for a com-

pletely specified distribution P(g) is well understood. In addition
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Hartley and Pfaffenberger (1972) and Lurie (1971) have shown that Q2k

can be a very powerful goodness-of-fit statistic for a completely

specified distribution P(g). However, the distributions of the goodness-

of-fit statistics Qlk' Q2k' and Q3k which essentially represent the

minimums over the parameter spaces of Qlk' Q2k' Q3k respectively are

mostly unknown. The original hope was that the distribution of the k s

would be sufficiently close to that of the Qk s to make the Qk 's useful

in determining goodness-to-fit for not completely specified distributions.

(The F(-;a,G ) are, of course, not completely specified since a and G

are both unknown.) Unfortunately, in a recent Monte Carlo study it has

become apparent that this hope has not been fully realized. The relatively

large difference between the distributions of Q2k and Q2k has already been

noted and at least partially compensated for via the Monte Carlo sample

percentiles for 2k tabled in Appendix F.

The Monte Carlo study was itself quite reasonable although small.

Each of the four distributions, P(g), illustrated in Figure 1 was con-

sidered. In each case the range of the distribution is from 0 to 10 with
*
G = 10. Three independent samples of size n = 40 were selected from

^, ^* A*

each P(g) and 95% confidence limits G1 , G2, G3 determined. The values

k - 5, 10, 20 were considered with m - 1 and 2 for each k. When de-

termining C1, the G1, ..., Gk were 2, 4, 6, 8, 10 for k = 5, and 1, 2,

10 for k - 10, and .5, 1.0, 1.5, ..., 10.0 for k - 20. When determining

61 and C2, the number of grid points gj, ..., g; at which the derivative

of the estimated distribution was required to be nonnegative was S - 10,
and the g, .... g 0 were evenly spaced between g(1) and G for G1 and

evenly spaced between 8 (n-k+l) and G for C2. The sequence of estimates G

of G considered was 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.8, 11.0,
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11.2, 11.4, 11.6, 11.8, 12.0, 1.2.5, 13.0, 13.9), 14.0, 14.5, 15.0, 15.5.
*i

The last estimate G of G corresponding to a "good fit" was taken to be

the 95% confidence limit G . These confidence limits are given in Table 1.

The Monte Carlo study indicated several interesting characteristics

of the confidence limit procedures.

All three confidence limits CG, G2 , 3 did bettger in terms of

IG- Gi for m = I than they for m = 2. Some additional experimentation

with m = 3 supports the idea that m 1 is probably best.

Three practical limitations to the confidence limit G are

(i) the necessity of specifying apriori G1 < G2 < ... < Gk < G

with 0 < P(GI ) < P(G2) < ... < P(Gk) < 1,

(ii) the singularity of VI if P(GI) = 0 or G 1 > G for any i, and

(iii) the frequent singularity of V1 if k is large relative to n so

that two or more sample proportions (p1 ) are equal.

This last limitation made G1 useless most of the time when k = 10 or 20

and n = 40.

The confidence limits G2 and G3 tended to improve as k increased.

Although the four P(g) graphs in Figure I are certainly not all linear,

they do not depart "drastically" from linearity, so it is entirely possible

that G2 and G3 might not always improve with k for other shapes of P(g).

Unfortunately, for small k (k = 5, 10) the distribution of 03k

seems to not be close enough to a chi-squared distribution with m + 1

degrees of freedom to make G3 very useful. From a theoretical viewpoint

T -1 I)-1 T -I
the problem is in the "approximate" normality of a - (X V2  XGV2 Y

since it is the XG which is random and not the Y. From a practical
C^

viewpoint the problem is that almost any reasonable a has Xi > 0,

i 1, ... , m. Hence Q3k becomes almost entirely based on I 0 - 01.
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Table 1. Approximate 95% confidence limits for G = 10 based on 40

observations from the P(g) distributions in graphs 1, 2, 3, 4

Confidence Graph 1 Graph 2 Graph 3 Graph 4

Limit m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

G 1 5 10.2 10.1 10.1 10.0 10.0 10.3 10.1 10.0 10.1 10.0 10.1 10.1

1 10 10.2 10.1 10.2 10.0 .. . . -- 10.2

1 20 -- -- --

2 5 13.5 13.5 13.5 11.0 -- 14.5 10.2 10.0 10.1 13.0 13.5 13.0

2 10 -- 13.5 13.5 10.3 .. --.. . ..

2 20 .. .. ... . .... . ... .. .

2 20

2  1 5 11.6 11.0 11.2 15.0 -- 10.5 -- 14.0 10.0 10.0 10.1

1 10 13.0 11.6 11.2 11.2 11.6 14.5 12.5 13.0 13.0 10.0 10.0 10.3

1 20 13.0 11.2 11.4 10.0 10.5 10.0 10.0 11.0 11.0 10.0 10.0 10.0

2 5 13.5 12.0 13.0 .. .. ..- 10.0- -- 10.0 10.3

2 10 -- 11.6 14.0 .. .. .. 15.0 . .-- 10.0 10.0 10.1

2 20 -- 15.0 -- -- -- 10.0 -- 15.0 10.0 10.0 10.0

G 1 5 --.-.. .-.. .. .. . . .

1 10 15.0 -- --..... .

1 20 11.8 11.6 11.2 11.4 12.5 14.5 13.0 12.5 11.2 .. .. 14.5

2 5 -- -- -- -- -- --

2 10 --.--.-... .. ... . .

2 20 .. . .. . .. 14.5 14.5

*A -- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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But even concentrating on a and evaluating an estimate C of G on the

^ )/(T -I -1
basis of the "approximate" normality of (a-0-0 GV2 X )l

doesn't yield a C close enough to G often enough to be useful.

^* ^* ^* ^

The champion among CI, C2, and C3 appears to be C 2  The confidence

limit C2 probably has the strongest intuitive appeal, and the usefulness

of Q 2k as a goodness-of-fit index for a completely specified P(g) also

makes G2 attractive.
2*

As one might expect, the more nonlinear P(g) is near G and the nearer

dP(g) is to zero the tougher it is to estimate C
dg *g=

In fact, the ranking for the slopes of P(g) near C for graphs 1, 2, 3, and

4 was 4, 1, 3, 2 with 4 being the largest and the ranking of the per-

formance of G2 was the same 4, 1, 3, 2 with G2 having the best performance

for graph 4. This is particularly heartening from a practical viewpoint

since graph 4 corresponds to a g(x) with local optimum for x E R - a

situation which seems to occur frequently in practical mathematical pro-

gramming problems.

The behavior of G appears to be best when the P(g) distribution is

linear with positive slope for g < G in a neighborhood of C A way to

transform the underlying distribution P(g) into a distribution having

these characteristics more closely is to perform the confidence limit

procedures on

g1= g1 - u i , i 1, ... , n,

where ul, ... , u are independent uniform deviates with say

P(u < t) , t < 0

1 *

U

= I t > U

and U a suitably chosen constant. Of course, the least upper bound on
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the g's is still G . At first glance it seems counter-productive to

introduce noise (the u's) into the observations analyzed. However, when

P(g) is nonlinear with slope near 0 at G , the additional noise in the g's

may be more than offset by the relative linearity of P(g). To illustrate

these ideas, the above Monte Carlo study was essentially repeated with

the gi's transformed to g' s using u's that were uniformly distributed

on [0, U with U .5, 1.0, 2.0, and 5.0. The results are indicated

in Tables 2, 3, 4 and 5 respectively. (Since G3 appeared to do better

for k large than for k small, k = 5 was replaced by k = 40 in this

study.)

Several interesting observations can be made concerning the outcome

of the Monte Carlo study of the uniform deviate transformation. Several

of the tentative conclusions based on the original Monte Carlo study

were confirmed; namely,

(i) m = I tends to be best,

(ii) GI requires too much apriori information and usually can't be

determined for k large relative to n (k = 10, 20 here),

(iii) G2 and G3 tend to improve as k increase, and

(iv) G 2 tends to perform the best overall.

As expected, the best value for U depended on the graph of P(g).

Tables 6 and 7 indicate the relative behavior of C2 for U = 0.0 (the

original Monte Carlo study), 0.5, 1.0, 2.0, and 5.0. In graphs 1, 2, 3,

and 4 the relative magnitudes of the slope of P(g) near G is roughly the

same as the relative magnitudes of P(9.0 < g 1 10.0). Hence the following

comparison is revealing
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Graph P(9.0 < g < 10) Best U

4 .15 0

1 .10 1 or 2

3 .05 1 or 2

2 .01 5

Thus, it appears that the greater the probability of g being close to

G the smaller U should be. A conclusion which agrees with most

people's intuition.
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Table 2. Approximate 95% confidence limits for G f 10 based on 40

transformed observations from the P(g) distributions in

graphs 1, 2, 3, and 4 with the transformation being the

subtraction of a uniform deviate with range [0, .5]*

Confidence Graph 1 Graph 2 Graph 3 Graph 4

Limit m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

G1  1 5 10.3 10.2 10.2 10.6 10.0 10.2 10.0 10.0 10.2

1 10 -- 10.2 -. 10.1 --

1 20

2 5 14.0 13.5 13.5 15.0 10.2 10.2 13.0 13.5 10.2

2 10 -- 13.5 --. .. ... . ..-- 13.5 --

2 20

G2  1 5 11.4 11.4 11.2 14.5 -- 11.4 -- 14.0 14.5 15.0 10.3

1 10 12.5 11.6 11.0 12.5 14.5 12.5 12.5 12.5 12.5 10.0 10.0 10.2

1 20 13.0 11.4 11.2 10.0 10.8 10.0 11.2 10.0 10.8 10.0 10.0 10.0

2 5 13.0 13.0 12.5 .. .. ..- 13.0 -- -- -- 10.8

2 10 -- 11.6 11.0 10.0 10.0 11.2

2 20 -- 15.5 15.5 15.0 10.5 15.5 14.0 10.0 10.0 10.0

G3  1 10 13.0 -- -- -- 15.0 . -- 14.0

1 20 11.8 11.6 11.2 11.4 11.8 14.0 12.5 12.5 11.6 -- 13.5 12.5

1 40 11.0 10.8 10.6 10.0 10.0 11.0 11.2 11.6 11.0 11.4 11.2 11.2

2 10

2 20 . -- 15.5 .. ...--. 15.0 15.5

2 40 15.0 14.0 11.4 10.8 12.5 10.3 15.5 -- 15.0 10.0 15.5 15.5

*A -- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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Table 3. Approximate 95% confidence limits for G = 10 based on 40

transformed observations from the P(g) distributions in

graphs 1, 2, 3, and 4 with the transformation being the

subtraction of a uniform deviate with range [0, 1.0]*

Confidence Graph I Graph 2 Graph 3 Graph 4

Limit m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

G1  1 5 10.3 10.2 10.2 . -- 10.8 10.3 -- 10.2 10.2 10.0 10.0

1 10 10.4 -- 10.2

1 20

2 5 14.0 13.5 13.5 .. .. 15.5 10.3 -- 10.6 13.5 13.5 10.0

2 10 14.5 -- 13.5

2 20

G2  1 5 11.0 11.4 10.8 14.0 -- -- 11.6 -- 13.5 14.0 15.0 10.5

1 10 11.8 11.6 11.0 10.8 11.8 14.0 12.5 12.5 12.5 10.0 11.8 10.1

1 20 12.5 11.2 11.0 10.2 10.6 11.4 11.0 10.0 10.5 10.0 12.5 10.0

2 5 12.5 13.0 11.8 .. .. .. - 13.5 -- ... -- 11.4

2 10 15.5 14.0 13.5 -- . ... . .. 10.0 15.5 11.2

2 20 -- 15.5 15.0 .. .. ..- 10.5 15.0 14.5 10.0 -- 10.0

G3  1 10 -- 14.0 ...-- 10.6

1 20 11.8 11.4 11.0 10.2 11.2 12.5 13.0 13.0 11.6 14.5 12.0 11.4

1 40 10.8 10.8 10.4 10.2 10.0 10.4 11.2 10.0 10.8 10.8 10.8 11.0

2 10 ..-- 13.0

2 20 -- 15.0 15.5 -- ..-- 15.0 13.5 15.5 -- 15.5

2 40 15.0 12.5 11.0 11.4 13.0 12.5 15.5 -- 15.0 14.5 14.5 12.0

*

*A -- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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Table 4. Approximate 95% confidence limits for G = 10 based on 40

transformed observations from the P(g) distributions in

graphs 1, 2, 3, and 4 with the transformation being the

subtraction of a uniform deviate with range [0, 2.0]*

Confidence Graph 1 Graph 2 Graph 3 Graph 4

Limit m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

G1  1 5 10.3 10.2 10.3 .. 10.2 10.0 10.0 10.3 10.0 10.2

1 10 -- 10.3 -- -- 10.2 -- 10.2

1 20

2 5 14.0 13.5 14.0 .. .. ..- 10.3 10.0 13.5 13.5 14.0 10.2

2 10 -- 14.0-- 14.0 -- 13.5

2 20 -- I --

02 1 5 10.0 14.0 11.8 -- 13.5 -- 15.0 14.5 14.5 14.0 14.0 11.0

1 10 10.2 13.0 10.5 11.2 11.0 15.0 13.0 10.8 12.5 12.5 10.0 11.6

1 20 10.0 12.0 10.4 10.0 10.0 11.0 12.0 10.0 10.8 12.0 11.2 11.4

2 5 10.0 -- 14.0 -- 15.0 12.0

2 10 10.2 -- 13.5 14.5 -- 10.0 14.5

2 20 10.0 -- 14.5 -- .. .. .. 14.0 15.0 . -- 15.5

G3 1 10 -- 15.0 13.5 -- 12.5 .-- -- 15.0 . -- 14.0

1 20 13.5 11.8 10.4 10.4 10.0 14.0 12.5 10.6 11.2 12.0 13.5 11.2

1 40 10.6 11.0 10.0 10.0 10.0 11.2 11.0 10.0 10.6 10.6 11.4 10.5

2 10

2 20 . -- 14.5 13.5 15.0 -- -- 14.5 14.5 . -- 14.5

2 40 14.0 14.5 10.2 10.0 12.0 10.0 15.5 14.0 11.6 14.5 13.0 13.5

A-- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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Table 5. Approximate 95% confidence limits for G - 10 based on 40

transformed observations from the P(g) distributions in

graphs 1, 2, 3, and 4 with the transformation being the

subtraction of a uniform deviate with range [0, 5.0]*

Confidence Graph 1 Graph 2 Graph 3 Graph 4

Limit m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

G1  1 5 -- 10.3 10.3 .. .. ..- 10.5 -- -- -- 10.3

1 10 10.5 .. .... .. 10.3

1 2 0 -- .- -.-. .. .. .. . . .

2 5 -- 15.0 15.0 - -- ----- 15.5 .. .. .. .. 14.0

2 10 -- .--. . .. 15.5 .. .... .. 14.0

2 20

G2  1 5 14.0 12.5 11.4 11.4 13.5 10.8 14.5 -- 10.0 10.0 13.5 12.5

1 10 14.0 11.0 12.5 10.0 10.0 11.0 13.5 13.5 10.5 10.0 11.6 12.0

1 20 12.5 11.0 11.4 10.0 10.0 10.0 13.5 11.4 10.0 10.0 10.1 11.6

2 5 -- 15.5 13.5 . -- 14.5 . . 11.8 11.6 -- 14.5

2 10 -- 15.5 -- 15.5 15.5 --.. -- 14.5 11.6 -- 15.5

2 20 14.0 14.5 15.0 .. .. 15.5 13.0 . --

G3  1 10 -- 13.0 15.5 11.4 -- 14.5 .. .. 14.0 14.0 . --

1 20 11.8 10.6 11.0 10.0 10.3 10.0 12.5 13.0 10.0 10.0 10.4 11.8

1 40 10.5 10.0 10.3 10.0 10.0 10.0 11.4 11.6 10.0 10.0 10.0 11.0

2 10

2 20 -- 15.5 -- 13.0 13.5 14.5 -- 15.5 14.5 13.5 15.0 --

2 40 -- 10.0 10.6 11.0 12.5 11.4 1. 10.0 11.4 13.5 15.0

*A -- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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Table 6. 2 based on 40 observations from the P(g) distributions in
2

graphs 1, 2, 3, 4 when G = 10 and a uniform 0, U

deviates are subtracted from the observed g's*

Graph 1 Graph 2 Graph 3 Graph 4

U m k Trial: 1 2 3 1 2 3 1 2 3 1 2 3

0.0 1 5 11.6 11.0 11.2 15.0 .. .. 10. -- 14.0 10.0 10.0 10.1

0.5 1 5 11.4 11.4 11.2 14.5 -- 11.4 -- 14.0 14.5 15.0 10.3

1.0 1 5 11.0 11.4 10.8 14.0 -- 11.6 -- 13.5 14.0 15.0 10.5

2.0 1 5 10.0 14.0 11.8 -- 13.5 -- 15.0 14.5 14.5 14.0 14.0 11.0

5.0 1 5 14.0 12.5 11.4 11.4 13.5 10.8 14.5 -- 10.0 10.0 13.5 12.5

0.0 1 10 13.0 11.6 11.2 11.2 11.6 14.5 12.5 13.0 13.0 10.0 10.0 10.3

0.5 1 10 12.5 11.6 11.0 12.5 14.5 12.5 12.5 12.5 12.5 10.0 10.0 10.2

1.0 1 10 11.8 11.6 11.0 10.8 11.8 14.0 12.5 12.5 12.5 10.0 11.8 10.1

2.0 1 10 10.2 13.0 10.5 11.2 11.0 15.0 13.0 10.8 12.5 12.5 10.0 11.6

5.0 1 10 14.0 11.0 12.5 10.0 10.0 11.0 13.5 13.5 10.5 10.0 11.0 12.0

0.0 1 20 13.0 11.2 11.4 10.0 10.5 10.0 10.0 11.0 11.0 10.0 10.0 10.0

0.5 1 20 13.0 11.4 11.2 10.0 10.8 10.0 11.2 10.0 10.8 10.0 10.0 10.0

1.0 1 20 12.5 11.2 11.0 10.2 10.6 11.4 11.0 10.0 10.5 10.0 12.5 10.0

2.0 1 20 10.0 12.0 10.4 10.0 10.0 11.0 12.0 10.0 10.8 12.0 11.2 11.4

5.0 1 20 12.5 11.0 11.4 10.0 10.0 10.0 13.5 11.4 10.1 10.0 10.1 11.6

A-- indicates that none of the trial estimates of G yielded a goodness-

of-fit index exceeding its critical 95-th percentile.
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Table 7. Relative behavior of G2  in Monte Carlo study of the uniform

[0, U*] deviate transformation*

Average

U: 0.0 0.5 1.0 2.0 5.0

Graph k

1 5 11.3 11.3 11.1 11.9 12.6

1 10 11.9 11.7 11.5 11.2 12.5

1 20 11.9 11.9 11.6 10.8 11.6

2 5 ........ 11.9

2 10 12.4 13.2 12.2 12.4 10.3

2 20 10.2 10.3 10.7 10.3 10.0

3 5 .. .... 14.7 --

3 10 12.8 12.5 12.5 12.1 12.5

3 20 10.7 10.7 10.5 10.9 11.7

4 5 10.0 13.3 13.2 13.0 12.0

4 10 10.1 10.1 10.6 11.4 11.0

4 20 10.0 10.0 10.8 11.5 10.6

*A -- indicates that in at least one trial none of the trial

estimates G of G - 10 yielded a goodness-of-fit index ex-

ceeding its critical 95-th percentile.

..... ------.
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4. Concluding Remarks

Certainly the final word on a practical confidence limit G has not

been written. In this paper 3 confidence limit procedures based upon 3

goodness-of-fit statistics have been considered. Of these the procedure

based upon Q2k' m = 1, and the approximate percentiles of 0 2k has had

the best empirical behavior.

The goodness-of-fit index Q2k given in (2.3) can be rewritten in

the form

n-k+l n (z~t12 +ln21

Q2k = (n+l)(n+2) {n-k2  + (z -Z + - (n+2)2kI kl+tfn-k+2 t J

(See Hartley and Pfaffenberger (1972)). For m = 1

z= F(g(i);a,G )

= + a (g(i)-G)

and the a which yields 0 2k for a given estimate G of G is

a m (G-g (n-k+l)) /[(n-k+l)T ]

with

T = (G-g (n) 2 + n g) + /(n-k+l)
t=n-k+2

and

Q2k (n+l)(n+2) n-k+l)-I + 2a(g nk -G)(n-k+l)-i + a2 T1 - (n+2).

Thus, for m - 1, Q2k and G2 are easy to evaluate.

The confidence limit procedures considered herein are based on a

goodness-of-fit evaluation of F(-;;,G). An alternative approach taken by

several authors is to base G on the limiting distribution of order

statistics. For example, Boender et. al. (1980) use a method based upon

the two largest order statistics and a result due to De. Haan (1979).

Robson and Whitlock (1964) also base their confidence limit on the dis-

tribution of the two largest order statistics, but they assume that the
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underlying distribution is uniform. Clough (1969) assumes that the

gi's themselves implicitly act like largest order statistics having a

limiting distribution of the exponential form and determines his con-
*

fidence limit on G using parameter estimation techniques appropriate

for exponential distributions. Golden and Alt (1979) generalize

Clough's approach by assuming that the limiting distribution is of

the Weibull form. The crucial issue concerning these alternative ap-

proaches is whether or not in a particular problem the sample sizes

(explicit or implicit) are sufficiently large for the limiting dis-

tributions to apply.

The "optimal" transformation g of g has not been identified for

confidence limits based either on goodness-of-fit criteria or on

limiting distributions. The usefulness of transformations is a topic

worthy of further research.

Although neither the use of statistical techniques in mathematical

programming nor the use of confidence limits in steps of various algorithms

are new (see, e.g. Graves and Whinston (1968), (1970)), such usage is

certainly not widespread. Hopefully, improved confidence limit procedures

will greatly increase their usage.

The author gratefully acknowledges the support of the Office of

Naval Research.
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APPENDIX A

Specific Input Instructions for the Computer Implementation

of the Procedures based on Qlk' Q2k' and Q3k'

Card A. Title.

Columns 1-80: Any identifying title.

Card B. Procedures to be used.

Col. 1: IQlK

IQIK 1 if the procedure based on Qlk and the

sample proportions is to be performed.

I01K - 0 otherwise.

Col. 2: IQ2K

IQ2K I if the procedure based on Q2k and the k

largest order statistics is to be per-

formed.

IQ2K = 0 otherwise.

Col. 3: IQ3K

IQ3K = I if the procedure based on Q3k and the

estimated derivations is to be performed.

IQ3K = 0 otherwise.

Card C. Controlling the amount of printed output.

Col. 1: IWRITI

IWRITI = 1 implies that the sample proportions, the

estimated alphas and distributed function

resulting from the procedure based on Qlk

will be printed.

IWRITl - 0 otherwise.
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Col. 2: IWRIT2

IWRIT2 - 1 implies that the estimated alphas and

distribution function resulting from

the procedure based on Q2k will be

printed.

IWRIT2 - 0 otherwise.

Col. 3: IWRIT3

IWRIT3 = 1 implies that the estimated alphas,

lambdas, and distribution function re-

sulting from the procedure based on

Q3k will be printed.

IWRIT3 = 0 otherwise.

Card D. Sample size.

Col. 1-3: n - the number of independent observations on g.

(Format 13; i.e. a three digit integer right

justified.) 1 < n < 100.

Card E. Observations in the random sample.

Col. 1-80: gl' i - 1, ... , n.

g = i-th independent observation on g.

(Format 8F10.0; i.e., eight observations per card

with the first observation in columns 1-10 either

right justified or with the decimal point included,

the second observation in columns 11-20, etc.)

Card F. Transformation. (See Appendix D for a discussion of transforma-

tions.)

Col. 1-3: L (Format 13)

L - 0 if the gi's are not to be transformed.
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L > 0 Implies that L non-random estimates of G*

(namely, gl, .... gL to be read in on Card G)

will be used to transform each independent

observation gi to gi where

L

9, = WWgi + E WTif gi if
j=l

L-1 L

** *
WWgi + E WT WT.Sjfh+l W J - h g ( j ) + g(L) J L-h

if g(h) < gi <g(h+l)

if i > g(L)

where g(l) < "** < g(L) are the ordered

values of gl ' L and the W, WT, .,

WTL are the user specified weights (see Card H

and possibly Cards I and J). If L > 0, then

the procedures based on Qlk' Q2k' and Q3k are

performed on the gl' ..., gn instead of the

gl' " gn"

0 < L < 10.

Card G. Transformation. If L = 0, Card G is omitted.

Col. 1-80: gj, j = 1, ..., L. (Format 8F10.0)

g = J-th non-random estimate of G; g < G

Card F. Transformation. If L = 0, Card F is omitted.

Col. 1: INDEXW

INDEXW = 0 implies that the weights WW and WT,

WTL are to be read in.

L
Note: WW + Z WT =1.

J-
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INDEXW = I implies WW = 1/(L + 1) and

WT, = 1/(L + 1).

INDEXW - 2 implies WW = 1/[(L + 2)(L + 1)/2] and

WT, = (i + l)/[(L + 2)(L + 1)/2]

Card H. Transformation weight. If INDEXW>0, then Card H is omitted.

Col. 1-10: WW, the weight on gi" (Format FlO.O)

Card I. Transformation weight. If INDEXW>O, then Card I is omitted.

Col. 1-80: WT, j 1, ... , L. (Format BF10.0)

WT is proportional to the weight placed on the j-thjl
ordered non-random estimate g(j) in constructing the

g1 2 .... ' gn"

In the instructions below, read gl' "''g in place of g .... gn

if L > 0.

Card J. Transformation.

Col. 1: ISUBU

ISUBU = 1 if uniform random variables U1, ...

U on the range [O,U*] are to be sub-n

tracted from g1, ... gn respectively.

The resulting observations will also

be denoted by gl' ... , gn herein.

Note that G remains unchanged.

ISUBU = 0 if the observed gl' "'' gn are not to

be transformed by subtracting uniform

deviates.

Col. 6-15: U . (Format F10.0) This value is ignored if ISUBU 0.



Col. 16-25 ; NSEED1. (Format I10) Ignored if ISUBU = 0

Col. 26-35: NSEED2. (Format 110) Ignored If ISUBU = 0

NSEED1, NSEED2 are any 2 ten digit odd integers.

They are used to initialize the composite uniform

random deviate generator.

NSEED1, NSEED2 < 2, 147, 483, 647.

Card K. Nonnegative derivatives. If the procedures based on Qlk and

Q2k are neither one to be used, Card K is omitted.

Col. 1-2: S. (Format 12)

S - the number of relatively dense grid points,

i , at which the derivative of the es-

timated distribution function F(.; a, G) is

explicitly required to be nonnegative. For the

procedure based on 0
1k

g! g(1 ) + (i-l) [ (C-g())/S]

for i 1, ... , S. For the procedure based on

Q2k

gt' g(n-k+l) + (t-1)[(G-g(n-k+l))/S]

for i 1 1, ..., S.

1< S <40.

Card L. Trial estimates of G .

Col. 1-3: NTRIAL. (Format 13)

NTRIAL = the maximum number of trial estimates,

CTRIAL, of G to be evaluated

1 < NTRIAL < 100.

Card M. Trial estimates of G

Col. 1: INDEXG

INDEXG - 0 implies that the NTRIAL trial estimates

of C are being read in.
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INDEXG = I implies that the trial estimates of G

are to be GTRIAL, GTRIAL + GINC,

GTRIAL + 2*GINC, ... , GTRIAL + (NTRIAL-I)

*GINC.

,
Card N. Trial estimates of G . Only if INDEXG = 0, is Card N included.

Col. 1-80: GTRIALI ... , GTRIALNTRIAL. (Format 8F10.0)

Note GTRIAL 1 < ... < GTRIALNTRIAL.

Card 0. Trial estimates of G . Only if INDEXG = 1, is Card 0 included.

Col. 1-10: GTRIAL. (Format F10.0)

Col. 11-20: GINC. (Format F10.0)

Card P. Stopping rules.

Col. 1: ISTOP

ISTOP = 0 implies that all NTRIAL trial estimates

of G will be considered.

.
ISTOP = I implies that the estimation of G will

stop as soon as a trial estimate of G

is found with a goodness-of-fit index

greater than its critical value.

Card Q. Using Q3k' Include Card Q only if IQ3K = 1.

Col. 1-8: XNORM. (Format F8.0)

XNORM = the 100 w y -th percentile of the

standard normal distribution function

(N(O,1)) when 100 x y % confidence limits

on G based on the approximate normality of

A T -1
0 /(XT V-XG)I I  are desired. For a 95%

confidence limit XNORM - 1.645. (See

Appendix G for a table of XNORM values)
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Card R. Using Q3k* Include Card R only if IQ3K = 1.

Col. 1-40: Xm+m.Y , m 1, ..., 5. (Format 5F8.0)

Xm+ly m the 100 * y -th percentile of a chi-squared

distribution with m + I degrees of freedom

when 100 A y % confidence limits on G based

on Q3k are desired. (See Appendix H for a

table of percentiles of chi-squared distri-

butions.)

Card S. Degree of F.

Col. 1: IREADM

IREADM = 0 implies that the degree, m, of the ap-

proximating distribution function F is

to be determined using the procedure

described in Appendix E.

IREADM = 1 implies that m is to be read in.

1 < m < 5.

Col. 2: ICHKM

ICHKM = 0 implies that the degree of F will not be

evaluated using the procedure described

in Appendix E.

ICHKM = 1 implies that a value for m will be com-

puted using the procedure described in

Appendix E. (If IREADM = 0, then ICHKM

is automatically set to 1.) If IREADM = 1,

the value for m read in is used in the

procedures based on Qlk' Q2k' and Q3k; the

computed value of m is only for information
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and is not used in the procedures in-

volving Qlk' Q2k' and Q3k"

Card T. Degree of F. Include Card T only if IREADM = 1.

Col. 1: m, the degree of the approximating distribution

function F.

Card U. Using lk" Include Card U only if IQIK = I.

Col. 1-2: k. (Format 12)

k = the number of sample proportions to be used in

the confidence limit procedure based on Q
1k*

1< k <20.

2Col. 3-12: Xk,y (Format F10.0)

2 = the 100 x y -th percentile of a chi-squared
Xk, y

distribution with k degrees of freedom

when a 100 x y% confidence limit on G is de-

sired. (See Appendix H for a table of per-

centiles of chi-squared distributions.)

Card V. Using Qlk" Include Card V only if IQIK = 1.

Col. 1-80: ci  ... , G (Format 8FI0.0)

GI  the i-th scale point used in the procedure based

on Qlk"

Card W. Using Q2k' Include Card W only if IQ2K = 1.

Col. 1-2: k. (Format 12)

The k largest order statistics g(n+l)' "'', gn

will be used to estimate the upper tail of the

distribution F in the procedure based on Q2k"

1 < k < n < 100.
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Card X. Using Q2k* Include Card X only if IQ2k = 1

Col. 1-30: CRITL(l), CRITL(2). (Format 2F10.0)

These are the 100 xy -th percentiles of Q2k for

m = 1,2, and 3 respectively. These percentiles can

be found in Tables F.4, F.5, ... in Appendix F. If

m > 3 is specified, then CRITL(2) is used as an

approximate 100, y -th percentile of Q2k* This level

100 x y should correspond to the desired confidence

,

level in the 100 x y % confidence limit on G

Card Y. Using Q3k' Include Card Y only if IQ3K = 1.

Col. 1-2: k. (Format 12)

The k largest order statistics g(n-k+l)' "' g(n)

will be used in the procedure based on Q3k and

derivatives.

1 < k < n < 100.
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APPENDIX B

Sample Input for

Computer Implementat ion
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GRAPH I IRIAL 2
111

040
1.50 4.65 4.83 9.30 3.99 0. 49 7.29 9.19
1.43 3.68 6.95 4.09 9.39 6.11 9.73 1.27
2.13 5.40 5.39 9.76 9.12 5.84 3.23 2.70
3.30 7.22 2.05 5.73 0.42 2.64 0.47 6.98
6.57 5.79 9.34 4.25 5.63 1.85 8.96 6.27
0
0
10
21
0
10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.8
11.0 11.2 11.4 11.6 11.8 12.0 12.5 13.0
13.5 14.0 14.5 15.0 15.5
1
1.645
5.99 7.81 9.49 11.1 12.6
10
1
5

11.1
2.0 4.0 6.0 8.0 10.0
10

7.5151 6.7973
20
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APPENDIX C

Sample Output from

Computer Implementation
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APPENDIX D

Transformations of the Initial

Random Sample gl' ... gn

The confidence limit procedures described in section 2 assume only

that

i) g1 , ... ' gn are n independent observations on a random

variable g,

(ii) the least upper bound on g is G , and

(iii) the distribution function, P(g ), of g is well approximated

by a polynomial of degree at most m.

The only characteristic of P(g ) of real interest is G Hence, if

g= transformation of gi'

gl " g gn are independent,

G = least upper bound on g, and

P(g ) = distribution function of g,

the sample l ''' gn could also be analyzed by the confidence limit

procedures and provide the desired information on CG. In fact, if (g )

is more benign than P(g ), the analysis of g1, ".., may provide a

better confidence limit on G than that based on gil .... gn"

At this point in time the most benign form for P(g ) is unknown.

It is suspected that a helpful form for P(g ) is roughly linear for

9 < G in a neighborhood of G with the slope of P(g ) near C being neither

too near 0 nor too large.

Frequently when

G max g(x)
xcR
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some "good" values for x with "large" values of g(x) are known or can

be guessed apriori. Such x values (say, xi, ... , xL) and there

associated g values (say gl = g(xl), ..., gL = g(xL)) are usually known

or guessed from the physical characteristics of the problem. The

collection gl, "'' gL represents L nonrandom estimates of C Since

they are nonrandom, the confidence limit procedures should not be applied

directly to gl, ... , gL' However, the g,, "''I gL can be used to

"upgrade" a random sample gl, "" gn The upgraded random sample could

be generated by the following general transformation

L
gi = WWg i +  WTg(j) if gi < g( 1 )

L L

SWw + WT h g( j + =(L) -h if g (h) - i < (h+l )

J=h+l J=L-h

= gi if g i ' g(L)

where g( 1 ) < < g (L) are the ordered values of g., ... , gL and WW, WT,

WTL are nonnegative weights with

L
I = WW + I WT

J=l

Here g\ is a weighted average of g and those g's > gi " The computer

implementation of the confidence limit procedures allows the user to

specify
spciy WW = WTI , . WT L = I/(L+I)

or

WW - I/[(L+2)(L+l)/2]

WT= (i+l)/[(L+2)(L+l)/2]

or read in any values for WW >0, WT1, .... WTL. At this time it is not

apparent what "optimal" weights are.
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Of course, it is entirely feasible to create the observations to be

analyzed by first transforming gl "'', gn using L nonrandom estimates

of G and then subtracting random deviates ul, ..., u from thesen

transformed variables.

As discussed in section 3 an alternative transformation of

gg' "'' gn is

gi= - ui ' i = 1, ... , n

where ul, ..., un are independent nonnegative random variables with

greatest lower bound zero. In particular u being a uniform random

variable on [0, U*] seems like a reasonable choice since this tends

to make P(g) linear near G . Currently, the "optimal" magnitude of U

relative to the range of g is unknown.
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APPENDIX E

An Automated Procedure for Determining the Degree

of the Approximating Polynomial Distribution Function

Sometimes an investigation of the degree of the approximating

polynomial distribution function is of interest. If

F(g;a,G ) = m l( - + I
j=l j

is rewritten as

, m

F(g;a,G I = 9
j=O

then the smallest integer m > 2, say m , such that the estimate of

a is not significantly different from zero can be roughly determined.

This investigation takes the same form for Lhe procedures based on

Q2k and Q3k but has a different form for the procedure based on Qlk

These two forms are discussed below. If the user of the computer

implementation so requests, the value of m for any or all of the con-

fidence limit procedures will be determined. The user may also specify

whether or not m is to be set equal to m - 1 in each of the confidence

limit procedures.

For the confidence limit procedure based on Qlk the determination

of m is as follows: As described in section 2.1, determine the sample

proportions p, "'' Pk where

npi # of gl' ... ' g n < , i - 1, ... , k.

Then the vector (pI, '''' ) has approximately a multivariate normal
.. . P
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distribution with mean vector m . G J

S0 1j=O j

and symmetric covariance matrix V1 f (v li) with

m ) m h
vl j = bGih 1 - I a h /n for i <

h-0 h=O

Thus, the weighted least squares estimate of 8 f (81, ... , 8) is

8= (XV 1 lX) x V1 1 Y

which has approximately a multivariate normal distribution with mean

vector 8 and symmetric covariance matrix XTV lX
1

where

TB = (8I, '. 8m) T

X= (xij) with xi =G for i = 1, ... , k and j = 0, ... , m,

V1 = (vlij) with vlij =Pi(l-p )/n for i =1, ..., k and

j = ,..., k, and

T
Y= (p' "' Pk)

Furthermore, if 0m is 0 then m (XmV1 mX) has approximately

a t distribution with k-(m + 1) degrees of freedom. Since 8m W am$

the value of a is assumed to be zero if

m

s / L(XT -lX);mm k gL. 1 , <i: t k-m-l,.95

where tk.ml,.95 is the 95-th percentile of a t distribution with

k-(m+l) degrees of freedom. This is a test of the hypothesis a - 0m
with a significance level of approximately .10. The value of m is
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the smallest integer m > 2 for which a can be assumed to be zero on~m

the basis of the above t test.

For the confidence limit procedures based on either Q2k or Q3k

the determination of m is as follows: If

g(n-k+l) " g(n)

are the k largest order statistics from

m
F(g) = $ n

then

z i = F(g(i) )  i = n -k + ,••, n

are distributed like the k largest order statistics from a uniform

distribution. Analogously to section 2.2,

() n n In in

i=n-k+l j=n-k+l \h0 h i hO = 2

is minimized with respect to 0. Letting Q2k m represent this minimum,

the value of m -1 is taken to the smallest integer in such that

Q is less than the 90-th percentile of Q2k for m = 1 given in
2k,m

Appendix F (tables F.4 - F.9).

The computer implementation considers only m < 5. If m seems to

be > 6, the value of m is set equal to 6. This corresponds to a

maximum allowable value of m in the computer implementation being m = 5.
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APPENDIX F

Percentiles of Q 2k and Q 2k
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Table F.1 95-th percentile of the goodness-of-fit criterion Q2k

based on a Monte Carlo simulation involving 10,000 samples.*

n k = 5 10 15 20 25 30 35 40 45 50

10 13.46

15 14.42 21.85

20 14.87 23.12 29.38

25 15.14 23.88 30.72 36.52

30 15.31 24.37 31.60 37.84 43.41

35 15.43 24.74 32.22 38.78 44.68

40 15.52 25.00 32.70 39.47 45.64 51.34

45 15.60 25.20 33.05 40.01 46.39 52.31 57.85

50 15.65 25.35 33.34 40.43 46.97 53.06 58.82

60 15.72 25.61 33.76 41.07 47.82 54.18 60.20 65.99

70 15.78 25.77 34.07 41.51 48.43 54.97 61.19 67.17 72.92

80 15.83 25.89 34.29 41.85 48.88 55.55 61.91 68.05 73.96 79.76

90 15.86 26.00 34.46 42.10 49.22 56.00 62.48 68.73 74.79 80.65

100 15.88 26.07 34.59 42.31 49.51 56.36 62.91 69.26 75.40 81.42

*Information taken from Lurie (1971).
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Table F.2 99-th percentiles of the goodness-of-fit criterion Q2k

based on a Monte Carlo simulation involving 10,000 samples.*

n k =5 10 15 20 25 30 35 40 45 50

10 21.47

15 24.21 31.99

20 25.69 34.89 41.20

25 26.60 36.72 43.94 49.70

30 27.23 37.99 45.83 52.26 57.75

35 27.66 38.90 47.22 54.12 60.12

40 28.00 39.59 48.27 55.54 61.95 67.88

45 28.27 40.14 49.10 56.67 63.38 69.44 75.01

50 28.48 40.59 49.77 57.57 64.53 70.86 76.70

60 28.81 41.25 50.77 58.95 66.28 73.02 79.26 85.17

70 29.04 41.73 51.52 59.92 67.54 74.56 81.12 87.32 93.21

80 29.21 42.09 52.06 60.69 68.49 75.71 82.50 88.94 95.11 101.00

90 29.35 42.36 52.49 61.27 69.23 76.61 83.60 90.20 96.58 102.69

100 29.46 42.60 52.84 61.74 69.83 77.36 84.45 91.24 97.71 103.98

*Information taken from Lurie (1971).
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Table F.3 Upper percentage points of Q2 11 computed from (a) a Pearson

Type V approximation, (b) The exact recurrence formula using

numerical integration and (c) Monte Carlo based on 10,000 samples *

10% 5% 1%

n (a) (b) (C) (a) (b) (c) (a) (b) (c)

3 5-75 5"92 - 6-98 7.39 - 0 9.89 10"19 --

4 7"40 7-50 - 8.98 9"27 - 12-78 13-19
5 9.00 9.08 - 10.89 11.14 - 15.51 16.02 -

6 10.56 10.61 - 12.74 12.96 - 18.09 18.69
7 12-08 12-13 - 14.52 14.71 - 20.55 21.11
8 13.57 13.59 - 16.26 16.44 - 22.91 23.33 -

9 15'03 15-05 - 17-95 18'11 - 25"18 25"69 --

10 16"47 16-48 16-46 19-61 19-75 19"83 27"37 27-79 27-36
11 17-90 17-90 - 21"23 21"35 - 29'50 29-88 -
12 19'30 19-32 - 22-83 22-94 - 31-56 31-89 -
13 20-70 20'69 - 24-41 24-48 - 33"58" 33-86 -
14 22"08 22-09 - 25"96 26-05 - 35"54 35.73 -

15 23"44 23-47 22"96 27-49 27-56 26-93 37"46 37"53 37-00
16 24-80 24-83 - 29-00 29-02 - 39-35 39-22 -
17 26"14 - - 30-50 - - 41,19 -
18 27"48 - - 31-98 - - 43"01 -
19 28"80 - - 33.44 - - 44-80 -

1o% 5% 1%

(a) (c) 10) (e) (a)
20 30-12 29'77 34"90 34'50 46'56 45"98
21 31"43 - 36"34 - 4830 -

22 32-74 - 37"77 - 50"01 -
23 34-03 - 39-19 - 51'70 -
24 35"32 - 40-60 - 53-38 -

25 36"61 - 42-00 - 55"03 -
26 37-89 - 43"39 - 5666 -

27 39"16 - 44"77 - 58-28 -
28 40'43 - 46"15 - 59-89 -
29 41"70 - 47"52 - 6148 -
3.) 42-96 42-77 48'88 48'72 63"05 62"64
315 49.20 - 55.59 - 70.75 -
40 55.35 55.19 62. R; 61.74 78-20 79.55
45 61"43 -- 68-63 - 85.44 -
50 67.45 67-21 75'00 75-01 92.53 93.60

55 73"42 - 81"30 - 99.48 -
60 79'34 . 87-53 - 106-31 -
65 85'22 - 93'71 - 113-05 -
70 91.07 - 99-83 - 119.70 -
75 96-88 96"73 105"90 10568 12628 125f'61
80 102-67 - 11194 - 13279 --
85 108"43 - 11794 - 139-24
90 114-16 - 123'91 - 14564
95 129'88 - 129'84 - 15200 -

100 125.57 125.97 135"75 135"15 158.31 157"59
500 558"42 - 57811 68"11 -

* Information taken from Hartley and Pfaffenberger (1972).
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Table F.4 Observed percentiles of Q2k for m = 1 and k f 5 based on a

Monte Carlo simulation involving 1500 samples.

] 11 9

Percentile 5 10 50 80 90 95

nI

10 0.7950 1.0949 2.3042 3.3690 3.9015 4.5410 5.3294

15 0.6751 0.9775 2.1596 3.0425 3.5542 3.9302 4.4962

20 0.6877 0.9782 2.0696 2.9158 3.3288 3.6932 4.2915

25 0.6893 0.9596 1.9700 2.7530 3.2200 3.5032 4.0544

30 0.7273 0.9544 1.9289 2.7361 3.1056 3.3973 3.9597

35 0.6550 0.9029 1.9346 2.6579 3.1028 3.4212 3.9295

40 0.7358 0.9684 1.9094 2.6982 3.0836 3.4030 3.8690

45 0.6800 0.8878 1.8490 2.6046 3.0072 3.2672 3.8270

50 0.7206 0.9589 1.9374 2.6762 3.0377 3.2993 3.7678
60 0.6842 0.9035 1.8724 2.5782 2.9308 3.2392 3.6676

70 0.6255 0.8787 1.8664 2.5900 2.9160 3.1548 3.6470

80 0.6601 0.9105 1.8391 2.4997 2.8721 3.1398 3.5502

90 0.7128 0.9529 1.8747 2.6185 2.9622 3.2496 3.5794

100 0.6180 0.8571 1.8293 2.5376 2.8690 3.1759 3.6190

_ _ _ _ _ _ _ I _ _ _ _ _ I _
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Table F.5 Observed percentiles of Q9k for m = 1 and k = 10 based on a

Monte Carlo simulation involving 1500 samples

I
Percentile 5 10 50 80 90 95 99

n

10 3.3711 4.0552 7.3316 10.6786 12.8215 15.1200 20.8051

15 2.8167 3.4484 5.8781 8.1584 9.3515 10.6328 13.1150

20 I 2.8702 3.3154 5.4976 7.3223 8.3734 9.2977 11.2154

25 2.7925 3.1467 5.2457 6.7980 7.7112 8.5010 9.6934

30 2.5955 3.0817 5.0570 6.5695 7.3799 7.9939 9.4950

35 2.6555 3.1218 4.9751 6.2796 7.1655 7.8611 8.7823

40 2.6070 3.0222 4.7909 6.1524 6.9258 7.5151 8.8534

45 2.6782 3.0145 4.7416 6.0532 6.8252 7.3820 8.4659

50 2.4862 2.9308 4.6528 5.9321 6.6772 7.2681 8.2132

60 2.5016 2.9023 4.5525 5.8266 6.5429 7.0334 7.9444

70 2.5207 2.9203 4.4808 5.6674 6.3457 6.8675 7.6635

80 2.5231 2.9628 4.5102 5.6608 6.3043 6.7866 7.7215

90 2.4011 2.8398 4.4074 5.6483 6.3077 6.7621 7.6957

100 2.4607 2.8555 4.4198 5.6185 6.2526 6.8083 7.6995

_ _ _ _ ~~~ ~ ~~~I _ I _ _ -_ _ - _ _
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Table F.6 Observed percentiles of Q2k for m = I and k = 15 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15 6.0914 7.1359 12.2815 16.6570 20.2154 23.8590 33.7135

20 5.6776 6.4080 9.9970 13.2789 15.5312 17.4707 21.1083

25 5.3608 6.1082 9.3787 11.9973 13.5924 15.0445 17.7235

30 5.2068 5.9049 8.7984 11.0806 12.3676 13.4961 15.2003

35 4.8240 5.5523 8.3797 10.4859 11.6225 12.6532 14.6437

40 4.7368 5.4552 8.0681 10.0152 11.1980 12.3028 14.1008

45 4.6838 5.4340 7.9397 9.8499 10.9455 11.9427 13.4631

50 4.7923 5.3627 7.8080 9.6826 10.6161 11.5213 12.8710

60 4.7227 5.2296 7.5711 9.2368 10.1833 11.2696 12.6117

70 4.5246 5.0369 7.5225 9.1451 10.1479 10.8993 12.3907

80 4.5285 5.1607 7.2436 8.9037 9.8969 10.5539 12.1855

90 4.5712 5.1717 7.2649 8.8319 9.6632 10.3896 11.8508

100 4.5097 5.0009 7.2393 8.7609 9.5403 10.2972 11.6714
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Table F.7 Observed percentiles of Q2k for m = 1 and k 20 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20 9.2579 10.5217 16.5988 22.7815 26.9844 30.6751 38.3473

25 8.5401 9.5732 14.4469 19.0561 21.8008 24.3088 29.6780

30 8.0960 8.9815 13.4853 17.0045 19.0373 21.2573 24.8389

35 7.8583 8.7390 12.5412 15.8006 17.7042 19.5008 22.8097

40 7.6267 8.5997 12.0263 14.8637 16.5321 17.6523 20.5317

45 7.4320 8.3000 11.7349 14.3124 15.8265 17.0063 19.8576

50 7.2564 7.9921 11.3406 13.7053 15.1775 16.5539 18.8688

60 7.0809 7.8149 10.8401 13.2074 14.5522 15.4355 18.5607

70 6.9626 7.8092 10.5761 12.7222 13.8563 14.9032 16.8736

80 6.8612 7.6857 10.3791 12.3866 13.4785 14.3257 16.4240

90 6.7622 7.5427 10.1685 12.3459 13.3713 14.4311 16.4125

100 6.9108 7.5716 10.2337 12.1787 13.1416 14.2235 16.1448
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Table F.8 Observed percentiles of Q2k for m = I and k = 25 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20

25 13.0864 14.5874 22.0860 29.4558 33.8175 38.7396 53.8266

30 11.bl70 13.0592 19.0359 24.5862 27.9174 30.9565 38.9233

35 11.2338 12.4910 17.7130 22.1414 24.4157 27.2240 31.7071

40 10.7206 11.8601 16.6420 20.5820 22.9580 25.3261 30.1502

45 10.4122 11.7226 15.8099 19.2329 21.2110 23.1475 26.9785

50 10.1611 11.0480 15.2611 18.3234 20.4047 21.9522 24.9177

60 9.9086 10.7442 14.6107 17.7812 19.2960 20.9158 23.2428

70 9.3952 10.4303 14.0350 16.7457 18.1994 19.6407 22.7552

80 9.3390 10.1804 13.6569 16.2853 17.8386 19.1040 22.1676

90 9.1780 9.9792 13.4492 15.8638 17.2472 18.4011 20.6108

100 8.8945 9.9902 13.1934 15.6186 16.8663 18.0363 20.4707
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Table F.9 Observed percentiles of Q2k for m = 1 and k = 30 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20

25

30 15.9556 17.8899 26.3351 34.5368 40.0028 45.4640 59.5800

35 15.0606 16.6132 23.7549 29.7509 33.5835 37.1985 44.5941

40 14.6048 16.1073 21.9367 27.1967 29.9356 32.6829 39.0256

45 13.8515 15.1399 20.7218 25.0228 27.8213 30.6415 36.2437

50 13.1543 14.4307 19.7203 24.0512 26.4301 28.8160 33.0465

60 12.6673 13.8159 18.4865 22.1482 24.2446 26.3576 29.1589

70 12.3299 13.5556 17.7348 21.0749 22.7931 24.4371 28.0009

80 11.9518 12.9899 17.1229 20.1220 21.9159 23.5572 26.7444

90 12.0188 12.8475 16.7569 19.7140 21.3977 22.7690 25.3704

100 11.6842 12.5434 16.4005 19.1245 20.5820 22.0335 25.0725
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Table F.10 Observed percentiles of Q2k for m = 2 and k = 5 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10 0.4613 0.6782 1.7502 2.7411 3.3214 3.8755 4.6372

15 0.4501 0.6765 1.6995 2.4604 2.9661 3.3802 4.0154

20 0.4174 0.6645 1.6416 2.4443 2.8460 3.1589 3.7249

25 0.4632 0.6502 1.6027 2.3419 2.7016 3.0544 3.7034

30 0.4344 0.6789 1.6016 2.2395 2.5904 2.8859 3.4380

35 0.3967 0.6054 1.5620 2.2351 2.6275 2.9467 3.5036

40 0.4358 0.6133 1.5123 2.2375 2.5901 2.8693 3.5123

45 0.4004 0.6090 1.5335 2.1455 2.5141 2.8219 3.2461

50 0.3893 0.6231 1.5539 2.2010 2.5994 2.8621 3.3066

60 0.4146 0.6190 1.5171 2.1555 2.5063 2.7982 3.3952

70 0.4869 0.6595 1.5227 2.1448 2.5051 2.7531 3.1990

80 0.3795 0.6008 1.4664 2.0944 2.4239 2.7459 3.2971

90 0.4492 0.6889 1.4855 2.0973 2.4535 2.7124 3.3451

100 0.4193 0.6387 1.4665 2.1283 2.4971 2.7880 3.1881
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Table F.11 Observed percentiles of Q2k for m = 2 and k = 10 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10 2.7735 3.4664 6.3194 9.0145 11.0287 12.5317 16.6531

15 2.4236 2.9753 5.1627 7.1074 8.4276 9.4173 11.2169

20 2.4617 2.8621 4.8016 6.4501 7.3404 8.0265 9.4346

25 2.2138 2.6814 4.5273 5.9655 6.7507 7.5323 8.8709

30 2.2791 2.6962 4.4365 5.7928 6.5952 7.2239 8.7974

35 2.2573 2.6721 4.2996 5.6440 6.3629 6.9724 7.9919

40 2.2259 2.6656 4.2738 5.5084 6.2222 6.7973 7.9441

45 2.1947 2.5782 4.2543 5.4622 6.1280 6.8178 7.8115

50 2.1860 2.5545 4.1348 5.3299 6.0032 6.5015 7.6552

60 2.1459 2.5384 4.0685 5.2358 5.7932 6.3799 7.2054

70 2.0723 2.4636 4.0438 5.1125 5.7523 6.2126 6.9384

80 2.0873 2.4621 3.9945 5.1090 5.7458 6.2483 7.2358

90 2.1828 2.5129 3.9601 5.0589 5.6437 6.1858 7.0296

100 2.1810 2.5089 3.9695 5.0775 5.5919 6.0206 6.7823

4.
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Table F.12 Observed percentiles of Q2k for m 2 and k = 15 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15 5.4998 6.4797 10.5848 14.2243 16.9938 20.2635 26.6316

20 5.1906 5.8855 9.2666 12.1887 14.1269 15.7781 19.5845

25 4.7518 5.4342 8.3780 10.7441 12.1953 13.5227 15.9983

30 4.3919 5.0953 7.8047 9.9288 11.1551 12.2020 14.3209

35 4.4576 4.9903 7.5455 9.4857 10.5866 11.4383 13.8742

40 4.3089 5.0156 7.3988 9.2471 10.4213 11.2213 12.9824

45 4.2903 4.8581 7.2590 8.9729 10.0068 10.9088 12.7422

50 4.4317 4.9606 7.1508 8.9278 9.9109 10.7047 12.5022

60 4.1014 4.6746 6.9142 8.4749 9.4833 10.3124 11.7445

70 4.1753 4.6893 6.7713 8.4153 9.2361 10.0144 11.4842

80 4.1534 4.6429 6.7791 8.3617 9.1988 9.7937 11.1319

90 4.1527 4.6438 6.7590 8.1571 8.9440 9.6718 10.7496

100 4.0700 4.6384 6.5378 8.0925 8.8913 9.6060 10.8851
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Table F.13 Observed percentiles of Q2k for m = 2 and k = 20 based on a

Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20 8.5894 9.7797 14.9154 20.1513 23.5669 25.8466 33.6911

25 7.9831 8.9248 13.2781 16.9533 19.1330 21.4918 26.6315

30 7.5345 8.4257 12.1439 15.3297 17.1796 18.8577 22.9272

35 7.3227 8.2013 11.7392 14.5209 16.1844 17.8072 21.3554

40 7.0572 7.8364 11.1554 13.6066 15.0583 16.4068 19.1958

45 6.6492 7.5481 10.7026 13.1403 14.4691 15.5158 18.1505

50 6.7204 7.4707 10.5959 12.7150 14.0975 15.1015 17.0252

60 6.6992 7.2944 10.1405 12.2380 13.5588 14.3838 16.4226

70 6.4482 7.1605 10.0402 12.0705 13.1646 14.0537 16.1698

80 6.3564 7.0138 9.6327 11.5153 12.5613 13.4435 15.2592

90 6.2466 6.8562 9.5335 11.4035 12.4791 13.1713 14.8876

100 6.4103 6.9463 9.3183 11.3160 12.3835 13.3123 14.4369
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Table F.14 Observed percentiles of Q2k for m = 2 tind k = 25 based on

a Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20

25 1.1.6522 13.1403 19.6254 25.5485 29.0540 33.0684 41.8129

30 11.2810 12.2345 17.6469 22.3011 24.6344 27.5356 33.3442

35 10.3227 11.4571 16.2680 20.0283 22.4879 24.8890 30.7655

40 9.9597 10.9959 15.4268 18.9114 20.9758 23.0225 25.9440

45 9.7321 10.6639 14.6991 18.1540 20.0668 21.5444 25.6196

50 9.4702 10.4074 14.1786 17.4987 19.3772 20.7472 23.5817

60 9.1478 10.0422 13.6210 16.3821 17.9238 19.2319 21.5942

70 8.8462 9.8860 13.1055 15.5060 16.9985 18.1400 20.2148

80 8.8309 9.6249 12.7348 15.2548 16.4483 17.5788 20.3181

90 8.6677 9.4741 12.6442 14.9047 16.2174 17.1329 18.9588

100 8.6958 9.5213 12.5288 14.7986 15.9483 17.0049 18.8317
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Table F.15 Observed percentiles of Q2k for m f 2 and k = 30 based on

a Monte Carlo simulation involving 1500 samples.

Percentile 5 10 50 80 90 95 99

n

10

15

20

25

30 15.0876 16.9618 24.5298 30.7084 34.6084 39.1290 48.3428

35 14.4291 15.9360 22.1135 27.8407 31.6929 35.4093 42.3229

40 13.3173 14.6457 20.0889 24.4914 27.5545 30.1500 35.3132

45 13.3775 14.4755 19.5084 23.7013 26.4497 28.5206 32.8791

50 12.2556 13.3886 18.7108 22.5190 24.8608 26.6890 30.5328

60 12.1600 13.1408 17.6514 20.8903 23.0409 24.8029 27.5976

70 11.9319 12.9337 16.8397 19.8259 21.5450 22.9388 25.5781

80 11.2707 12.3369 16.2566 18.9258 20.4412 21.8323 25.2829

90 11.1630 12.0334 15.7477 18.7200 20.5235 21.9124 24.9271

100 11.2597 12.1157 15.6233 18.2995 19.8963 21.1062 23.8996
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APPENDIX G

XNORM Values

Confidence level XNORM value

99.9% 3.09

99.5% 2.58

99.0% 2.33

98.0% 2.05

97.0% 1.88

96.0% 1.75

95.0% 1.64

90.0% 1.28

85.OZ 1.04

80.0% .84

70.0% .52

60.0% .25

50.0% .00
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APPENDIX H

Percentiles of Chi-Squared Distributions

2 2 2 2 2 2 2 2 2 2 2 2 2 2
*D.F X2005 X.01 X.025 X.05 X.10 X.2 0 X.3 0 X.50 X.7 0 X.8 0 X.90 X.95 X.97 5 X.9 9 X.995

1 .000 .000 .001 .004 .016 .064 .148 .455 1.07 1.64 2.71 3.84 5.02 6.63 7.88

2 .010 .020 .051 .103 .211 .446 .713 1.39 2.41 3.22 4.61 5.99 7.38 9.21 10.6

3 .072 .115 .216 .352 .584 1.00 1.42 2.37 3.66 4.64 6.25 7.81 9.35 11.3 12.8

4 .207 .297 .484 .711 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 11.1 13.3 14.9

5 .412 .554 .831 1.15 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.1 12.8 15.1 16.7

6 .676 .872 1.24 1.64 2.20 3.07 3.83 5.35 7.23 8.56 10.6 12.6 14.4 16.8 18.5

7 .989 1.24 1.69 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.0 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 3.49 4.59 5.53 7.34 9.52 11.0 13.4 15.5 17.5 20.1 22.0

9 1.73 2.09 2.70 3.33 4.17 5.38 6.39 8.34 10.7 12.2 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 6.18 7.27 9.34 11.8 13.4 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 6.99 8.15 10.3 12.9 14.6 17.3 19.7 21.9 24.7 26.8

12 3.07 3.57 4.40 5.23 6.30 7.81 9.03 11.3 14.0 15.8 18.5 21.0 23.3 26.2 28.3

13 3.57 4.11 5.01 5.89 7.04 8.63 9.93 12.3 15.1 17.0 19.8 22.4 24.7 27.7 29.8

14 4.07 4.66 5.63 6.57 7.79 9.47 10.8 13.3 16.2 18.2 21.1 23.7 26.1 29.1 31.3

15 4.60 5.23 6.26 7.26 8.55 10.3 11.7 14.3 17.3 19.3 22.3 25.0 27.5 30.6 32.8

16 5.14 5.81 6.91 7.96 9.31 11.2 12.6 15.3 18.4 20.5 23.5 26.3 28.8 32.0 34.3

17 5.70 6.41 7.56 8.67 10.1 12.0 13.5 16.3 19._, 21.6 24.8 27.6 30.2 33.4 35.7

18 6.26 7.01 8.23 9.39 10.9 12.9 14.4 17.3 20.6 22.8 26.0 28.9 31.5 34.8 37.2

19 6.83 7.63 8.91 10.1 11.7 13.7 15.4 18.3 21.7 23.9 27.2 30.1 32.9 36.2 38.6

20 7.43 8.26 9.59 10.9 12.4 14.6 16.3 19.3 22.8 25.0 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 15.4 17.2 20.3 23.9 26.2 29.6 32.7 35.5 38.9 41.4

22 8.64 9.54 11.0 12.3 14.0 16.3 18.1 21.3 24.9 27.3 30.8 33.9 36.8 40.3 42.8

23 9.26 10.2 11.7 13.1 14.8 17.2 19.0 22.3 26.0 28.4 32.0 35.2 38.1 41.6 44.2

24 9.89 10.9 12.4 13.8 15.7 18.1 19.9 23.3 27.1 29.6 33.2 36.4 39.4 43.0 45.6

25 10.5 11.5 13.1 14.6 16.5 18.9 20.9 24.3 28.2 30.7 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 19.8 21.8 25.3 29.2 31.8 35.6 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 18.1 20.7 22.7 26.3 30.3 32.9 36.7 40.1 43.2 47.0 49.6

28 12.5 13.6 15.3 16.9 18.9 21.6 23.6 27.3 31.4 34.0 37.9 41.3 44.5 48.3 51.0

29 13.1 14.3 16.0 17.7 19.8 22.5 24.6 28.3 32.5 35.1 39.1 42.6 45.7 49.6 52.3

30 13.8 15.0 16.8 18.5 20.6 23.4 25.5 29.3 33.5 36.2 40.3 43.8 47.0 50.9 53.7

40 20.7 22.1 24.4 26.5 29.0 32.3 34.9 39.3 44.2 47.3 51.8 55.8 59.3 63.7 66.8

50 28.0 29.7 32.3 34.8 37.7 41.4 44.3 49.3 54.7 58.2 63.2 67.5 71.4 76.2 79.5

60 35.5 37.5 40.5 43.2 46.5 50.6 53.8 59.3 65.2 69.0 74.4 79.1 83.3 88.4 92.0

*D.F. = Degrees of Freedom
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